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The RIME

● You now have some understanding of interferometry

● Let's step back and think about what we're really 
measuring

● Hence, the radio interferometer measurement 
equation (RIME)

– Hamaker, Bregman, Sault 1996

– Hamaker 2000
● Proper mathematical description of interferometry

– What we measure, how to calibrate, how to correct
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Plane waves

● Electromagnetic plane waves

– If monochromatic & perfectly polarized:

– EM field can be described 
by a complex 2-vector:

– No z component, and same across entire plane
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Incoherent radiation

● Radiation from astrophysical sources is neither 
monochromatic nor perfectly polarized

● Noise! Think of e waving around randomly
● But still no z component
● Still the same across the entire plane (a.k.a. it is a 

transverse EM field)

● Intensity & polarization can then be defined in a statistical 
sense
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Stokes Parameters I

● Stokes parameters are defined in terms of the 
coherences:

● The angle brackets operator is an average over a  
frequency and time bin

● You can also think of ex and ey being random variables, 
and angle brackets denoting expectation
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Stokes Parameters II

● Perfectly polarized signals:

● Partially polarized: e “waves” in one direction slightly m 
ore than the other 



NASSP 2016 7:36

Jones Calculus

As the EM wave propagates,
the vector changes.

A transverse EM field can be 
described by a complex vector:

We assume all propagation effects
are linear. Any linear transform of a 
2-vector can be described by a 2x2 
matrix:
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z
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Jones Chains

Multiple propagation effects 
can be described by chaining up 
Jones matrices:
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Enter The Antenna

A dual-receptor feed 
measures two complex 
voltages (polarizations):

We may further assume the voltage 
conversion process is also linear. 
Therefore we have:
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z
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Jones Zoo

● K-Jones (propagation through free space)

● P-Jones (parallactic angle rotation)

● Zeta-Jones (ionospheric phase delay)

● F-Jones (Faraday rotation):



NASSP 2016 11:36

Jones Zoo II

● G-Jones (receiver gains)

● ...can often be split into a time-variable gain, and a 
frequency-variable bandpass:

● E-Jones (antenna primary beam)

● D-Jones (polarization leakage)
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Jones Sequences

● This is just an example!

● Order is important: matrices don't (in general) 
commute

– Must follow physical order of propagation effects
● Some specific matrices do commute

– Scalar matrix (K-Jones) commutes with everything

– Diagonal matrices commute among themselves

– Rotation matrices commute among themselves
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Why Jones?

● To reconstruct the sky, we need to correct for all 
propagation effects

● Jones calculus allows us to construct a full 
description of the propagation path

– some Jones terms are perfectly known a priori

– others can be solved for (i.e. calibration)
● Linear algebra tells us how to optimize
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Correlation

A correlator computes four complex pairwise 
products called correlations.
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The 2x2 Correlation Matrix

● It proves convenient to arrange the four correlations 
into a 2x2 correlation (a.k.a. visibility) matrix, 
because this can be expressed as a matrix product:
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Enter Jones

● Recalling that 

● ...we have

● (assuming the Jones matrices are constant over the 
averaging interval)
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The Brightness Matrix

● The inner quantity is called the brightness matrix, and 
it can be related to the Stokes parameters as:

● (assuming the Jones matrices are constant over the 
averaging interval)
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The Basic RIME

● This gives us the basic form of the RIME:

Measured
correlation

Intrinsic 
source

parameters

Propagation 
to antenna p

Propagation 
to antenna q
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The Onion RIME

● Recall Jones chains:

● This gives us the “onion form” of the RIME
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Specific vs. General RIMEs

● The above is “The RIME”, i.e. a general formalism

● In practice, we string together some specific Jones 
terms (depending on how accurately we need to model 
the an observation), and call it a RIME, or a 
measurement equation

● E.g. a simple RIME for a single point source, with 
receiver gains:

● Or an even simpler RIME with an ideal instrument:

(recall that K-Jones is propagation through free space, 
a.k.a geometric delay)
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Geometric Delay

P
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y  (North)
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● with the unit direction vector

● l,m,n are also called
the direction cosines
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Averaging & Smearing

● Our derivation of the RIME assumed a constant Jones 
term over the averaging interval

● This is not always safe, e.g. K-Jones varies (rotates) 
with frequency and time:

● The effect of averaging a 
rotating complex vector 
is a reduction in amplitude

● This is known as 
[time/frequency] smearing
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Fringe Stopping

● We want to minimize phase rotation in our region of 
interest i.e. around the direction 

● We can do this by having the correlator insert an 
artificial phase delay of 

● This known as fringe stopping

● For a fringe stopping correlator, the K-Jones term is

● This ensures constant phase towards the direction of 
interest, and only slowly rotating phase near it
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The All-Sky RIME

● Until now we have only considered a single point source 
with brightness matrix B

● The real sky is a brightness distribution as a function of 
direction:

● The signal path from each direction is, in principle, 
different:

● Signals from different directions add up linearly, and we 
have an integral over a sphere:
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The All-Sky RIME II

Let's recast this as a 2D integration over the l,m plane:

● Each Jones matrix is a chain:

● ...which we can split into direction-dependent (DD) and 
direction-independent (DI) parts:
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The All-Sky RIME: a 2D Fourier Transform?

● We now have:

● Let's formally define a W-Jones as

● ...and absorb it into E-Jones:
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No DD Effects = Fourier Transform

● In the absence of DD effects, the integral is a true 2D FT:

● If we can estimate G (see Calibration), we can form 
corrected visibilities

● ...which correspond to a 2D FT of the underlying sky

● But DD effects always present (e.g. antenna primary 
beam)
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Trivial DD Effects

● Trivial DD effects are those that do not vary with time, an 
are the same across all antennas:

● We can then define an apparent sky:

● ...and treat our measurement as true 2D FT of the 
apparent sky

● This is the “classical regime” of interferometry (aka 
selfcal, or 2GC): neglect DDEs and recover the apparent 
sky
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Non-trivial DD Effects

● The classical regime breaks down when DDEs are not 
trivial

● For example, W-Jones is only trivial with either

– (a) narrow fields of view: 

– or (b) coplanar arrays:  
● Hence, wide-field problem (Chapter 5)

● Primary beam (E-Jones) is only trivial when

– Dishes are identical (they're not)

– Pointing is perfect (it isn't)

– Sky does not rotate (equatorial or tri-axis mount)
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Mueller Calculus

● An alternative to Jones calculus: often found in imaging 
literature

● Instead of using a brightness matrix, 
we pack the Stokes parameters
into a Stokes vector:

● We also define a measured Stokes
vector for each baseline:
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Mueller Matrices

● Since we assumed the system is linear, there must be a 
4x4 matrix relating the two vectors:

● This is called the Mueller matrix of baseline pq

● Useful, because it emphasizes the direct relationship 
between observed and intrinsic Stokes parameters

● Often found in imaging literature
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Deriving Mueller Matrices

● Using the Kronecker (outer) product, we can stack the 
visibilities into a 4-vector:

● By analogy, we can define a 
coherency vector

● ...and using the mixed product 
identity:

● we get:
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Deriving Mueller Matrices II

● The coherency vector relates to the Stokes vector via a 
conversion matrix S:

● The opposite relation is
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Deriving Mueller Matrices III

● We can now write the measured Stokes vector as

● ...and the full RIME becomes:

● And the Mueller matrix of baseline pq is given by:
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